top of page





Artificial Intelligence Major

Prof. Yonggyun Yu 유용균 

 

Email : ygyu {at} kaeri.re.kr yoyogo {at} gmail.com, ygyu {at} ust.ac.kr

Tel : +82-42-868-8160




2012 ~ present        Senior/Principal Researcher, KAERI

2020 ~ present        Research Leader, Applied AI Lab., KAERI

2021 ~ 2022            Adjunct Professor, Nuclear and Radiation Safety, UST

2023 ~ present        Full-time Professor, Artificial Intelligence, UST




Industrial AI(Simulation AI, AI based topology optimization, Anomaly detection)




2001       B.S.  Mechanical Engineering & Computer Science(sub) , KAIST

2003       M.S. Mechanical Engineering, KAIST

2010       Ph.D. Mechanical Engineering, KAIST




2010 ~ 2012      Director, Research Professor, Mobile Harbor Center, KAIST

2005 ~ 2005      Visiting Researcher, AIST, Japan





(On-going)

  • 원자력 인공지능 신뢰성 향상을 위한 기반기술 연구, ‘24~26, 30 억 (PI)


(Completed)

  • Strengthening the stability of Hanaro and research facilities through intelligent research facility operation, ‘21~23, 30 억 (PI)




(International Journal)

  • Y Joo, H Choi, G-E Jeong, Y Yu*, Dynamic graph-based convergence acceleration for topology optimization in unstructured meshes, Engineering Application of Artificial Intelligence, 2024 (IF: 8)

  • S Ryu, Y Yu, H Seo, Can Untrained Neural Network Detect Anomalies?, IEEE Transactions on Industrial Informatics, 2023 (IF:12.3)

  • G Lee, Y Joo, Y Yu, HG Kim, Dual-fluid topology optimization of printed-circuit heat exchanger with low-pumping-power design, Case Studies in Thermal Engineering 49, 2023

  • S Ryu, Y Yu*, Quantile-Mixer: A Novel Deep Learning Approach for Probabilistic Short-term Load Forecasting, IEEE Transactions on Smart Grid, 2023

  • S Ryu, B Jeon, H Seo, M Lee, JW Shin, Y Yu*, Development of deep autoencoder-based anomaly detection system for HANARO, Nuclear Engineering and Technology 55 (2), 2023

  • S Ryu, J Yim, J Seo, Y Yu, H Seo, Quantile autoencoder with abnormality accumulation for anomaly detection of multivariate sensor data, IEEE Access 10, 2022

  • S Moon, K Kim, GG Lee, Y Yu, DJ Kim, Pipeline wall thinning rate prediction model based on machine learning, Nuclear Engineering and Technology, 2021

  • B Jeon, J Kim, Y Yu, M Moon, Comparison of machine learning-based radioisotope identifiers for plastic scintillation detector, Journal of Radiation Protection and Research, 2021

  • Y Joo, Y Yu, IG Jang, Unit module-based convergence acceleration for topology optimization using the spatiotemporal deep neural network, IEEE Access, 2021

  • Y Yu, T Hur, J Jung, IG Jang, Deep learning for determining a near-optimal topological design without any iteration, Structural and Multidisciplinary Optimization, 2018

  • EH Kim, YS Jung, Y Yu, S Kwon, H Ju, S Kim, BM Kwak, IG Jang, KS Kim, An advanced cargo handling system operating at sea, International Journal of Control, Automation and Systems, 2014

  • Y Yu, IG Jang, BM Kwak, Topology optimization for a frequency response and its application to a violin bridge, Structural and Multidisciplinary Optimization, 2013

  • Y Yu, BM Kwak, Design sensitivity analysis of acoustical damping and its application to design of musical bells, Structural and Multidisciplinary Optimization, 2011

  • Y Yu, IG Jang, IK Kim, BM Kwak, Nodal line optimization and its application to violin top plate design, Journal of sound and vibration, 2010





(2018~present)        (사)AI프렌즈 대표(학회장)

(2021~present) Nvidia ambassador / DLI Instructor

(2023~present)        전산유체공학회 이사

(2020~present)        대한기계학회 인공지능머신연구회/IT융합부문 이사

(2020~2021)      대한기계학회 본부이사







  • Tech-Bridge (AI) (UST, 2023)

  • Industrial AI (CNU, 2022-2023)



  • AI Grand Challenge(인공지능그랜드챌린지) Winner(2021), 2nd Place(2022), Ministry of Science and Technology

scientist-analyzing-liquid-using-protective-equipment-indoors-generated-by-ai.jpg

Contents

bottom of page