top of page
20220211_120155.jpg

Peaple

PROFILE

연구원 프로필

photo.png

유용균

Yonggyun Yu

(34057) 111, Daedeok-Daero 989Beon-gil, Yuseong-gu, Daejeon, Korea

Office: 042-868-8160

Email: ygyu@kaeri.re.kr, yoyogo@gmail.com

Research Director, AI Application & Strategy Lab, KAERI

Adjunct Professor, University of Science and Technology

President, AIFrenz Incorporated Association(aifrenz.org)

Academic Interests

- Industrial AI(Simulation AI, AI based topology optimization, Anomaly detection)

- Structural optimization of musical instruments

- Modeling and simulation of a nuclear reactor

peaple.png

Experience

icon02.png

Korea Atomic Energy Research Institute (KAERI)
- Research Director / AI Application & Strategy Lab.

- Principal Researcher

- Senior Researcher

2012.3~current

2020.1~current

2021.9~current

2012.3-2021.8

University of Science and Technology /

- Adjunct Professor  / Nuclear and Radiation Safety

- Full-time Professor / Artificial Intelligence

2020.1-current

2020.1~2023.2

2023.3~current

Research Assistant Professor /KAIST Mobile Harbor Center

- Develop control system of Mobile Harbor crane

2000.9-2012.3

Visiting Researcher - AIST (Tsukuba)

- Optimization of X-FEM

2005.1-2005.6

Education

icon01.png

KAIST, Daejeon - Ph.D in Mechanical Engineering (Advisor: Prof. Byung Man Kwak)

Thesis: Topology Optimization of Violin Bridge

2003.3 -2010.8

KAIST, Daejeon - M.S in Mechanical Engineering (Advisor: Prof. Byung Man Kwak)

Thesis: Development of a CAD-based general purpose optimal design and its application to Structural Shape for Fatigue Life

2001.3 -2003.2

KAIST, Daejeon - B.S in Mechanical Engineering and Computer Science (Minor)

1996.3 -2001.2

International Journal

icon03.png

• G Lee, Y Joo, Y Yu, HG Kim, Dual-fluid topology optimization of printed-circuit heat exchanger with low-pumping-power design, Case Studies in Thermal Engineering, 2023 (IF:6.8, JCR top 10%)

• S Ryu, Y Yu*, Quantile-Mixer: A Novel Deep Learning Approach for Probabilistic Short-term Load Forecasting, IEEE Transactions on Smart Grid, 2023 (IF:9.6, JCR top 10%)

• S Ryu, B Joen, H Seo, M Lee, JW Shin, Y Yu*, Development of deep autoencoder-based detection system for HANARO, Nuclear Engineering and Technology, 2022

• S Ryu, J Yim, J Seo, Y Yu, H Seo*, Quantile autoencoder with abnormality accumulation for anomaly Detection of Multi-variate Sensor Data, IEEE Access, 2022

• Y Joo, Y Yu(co-first) and IG Jang*, Unit module-based convergence acceleration for topology optimization using the spatiotemporal deep neural network, IEEE Access, 2021

• S Moon, K Kim, GG Lee, Y Yu, D Kim, Pipeline wall thinning rate prediction model based on machine learning, Nuclear Engineering and Technology, 2021

• S Moon, S Han, T Kang, K Kim, Y Yu, J Eom, Impact parameter prediction of a simulated metallic loose part using convolutional neural network, Nuclear Engineering and Technology, 2020

• Y Yu, T Hur, J Jung, IG Jang, Deep learning for determining a near-optimal topological design without any iteration, Structural and Multidisciplinary Optimization, 2018

• EH Kim, YS Jung, Y Yu, S. Kwon, H Ju, S Kim, BM Kwak, IG Jang and K-S Kim, An advanced cargo handling system operating at sea, International Journal of Control, Automation and Systems, 2014

• Y Yu, IG Jang BM Kwak, Topology optimization for a frequency response and its application to a violin bridge, Structural and Multidisciplinary Optimization, 2013

• Y Yu, BM Kwak, Design sensitivity analysis of acoustical damping and its application to design of musical bells, Structural and Multidisciplinary Optimization, 2011

• Y Yu, IG Jang, IK Kim, BM Kwak, Nodal line optimization and its application to violin top plate design, Journal of Sound and Vibration, 2010

Domestic Journal

icon03.png

• 임소영, 서호건, 유용균, 다채널 시계열 신호 기반 3차언 측위를 위한 베이지안 최적화, 비파괴검사학회지 43(1), 2023

• 장영은, 정재호, 한진태, 유용균, 딥러닝 기반 국내 지반의 지지층 깊이 예측, 한국지반공학회논문집, 2022

• 문지유, 김민종, 이성옥, 유용균*, Triplet Loss 기반 딥러닝 모델을 통한 유사 아동그림 선별 알고리즘, 한국산업정보학회지, 2022

• 오승인, 이강헌, 안광현, 유용균, 김기환, 김진균, 디지털 트윈 기술을 활용한 음향-진동 배관 시스템의 가상 계측 기술 개발, 대한기계학회 논문집 A권, 2021

• 전병일, 김종열, 유용균, 문명국*, Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scinillation Detector, 방사선방어학회지, 2021

• 임지연, 이성옥, 김경표, 유용균*, 아동 그림 심리분석을 위한 인공지능 기반 객체탐지 알고리즘 응용, 한국산업정보학회지, 2021

• 김정진, 유용균, 장인권, 위상최적설계와 인공신경망을 이용한 골격계 의료영상 해상도 향상법, 기계저널 59(8), 2019

• 장인권, 유용균, 곽병만, 설계공간 조정과 세분화를 이용한 너클의 위상 최적설계, 대한기계학회논문집A권, 2006

• 송일환, 김익준, 리경호, 유용균, 한순흥, 대용량 해석을 지원하는 무기체계 연구 개발 전용 모델러 설계 기술 연구, 한국 CAD/CAM 학회 논문집, 2010

UST Logo

34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Korea 
TEL.+82-42-864-5551
FAX. +82-42-864-5554

Copyright 2023 University of Science and Technology. All rights reserved.

bottom of page